FEATURE

Using the OCLC WorldCat APIs

by by Mark A. Matienzo

Mashups combine information from several web services into a single web user
experience — but what do they look like in practice? Here are the gritty details of
connecting an industry leading online catalog with Google maps, and how Python

made it easy.

begun providing APIs to allow developers to reuse

data in various ways. OCLC, the world’s largest
library consortium, provides several APIs for develop-
ers, including APIs to search and retrieve bibliographic
records and data about their participating institutions.
This article describes the available APIs provided by
OCLC and a sample application to map library holdings
on a Google Map using worldcat, a Python module
written to work with these APIs.

I-ike other communities, the library world has

About OCLC, WorldCat, and WorldCat.org
The Online Computer Library Center, Inc. (OCLC), is

an international, non-profit cooperative that pro-
vides a variety of services to libraries, archives and
museums, and engages in research and programmatic
work for them. OCLC was founded in 1967 as the Ohio
College Library Center as an organization dedicated

to developing and supporting a computerized re-
gional library network for Ohio’s academic libraries. In
1971, OCLC’s bibliographic database, the Online Union
Catalog, began operation, and in 1981, the organiza-
tion changed its name to OCLC Online Computer Library
Center, Inc. From 1991 to 1996, OCLC provided access
to the Online Union Catalog on a subscription basis
for research use under the name WorldCat. In 1997,

6« Python Magazine « JUNE 2009

REQUIREMENTS

PYTHON: 2.4 - 2.7

Useful/Related Links:
e WorldCat Facts and Statistics - http://www.oclc.org/
us/en/worldcat/statistics/default. htm
e “Extending the OCLC cooperative” - http://web.
archive.org/web/20010615111317/www.oclc.org/strategy/
strategy _document.pdf
e QOCLC Office of Research - http://www.oclc.org/re-

search/projects/frbr/algorithm.htm
e Requesting a WorldCat API key -

http://worldcat.org/devnet/wiki/SearchAPIWhoCanUse
e SIMILE Exhibit API - http://simile-widgets.org/exhibit/
e Babel for SIMILE - http://simile.mit.edu/wiki/Babel
o Exhibit’s JSON format - http://simile.mit.edu/wiki/
Exhibit/Creating, Importing, and Managing Data
e WorldCat Identities - http://worldcat.org/identities/

e Terminology Services -
http://tspilot.oclc.org/resources,

e Metadata crosswalk service -
http.//www.oclc.org/research/researchworks/xwalk

e Third OCLC Research Software Contest -
http://www.oclc.org/research/researchworks/contest/

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

OCLC began referring to the Online Union Catalog in all
forms as WorldCat.

WorldCat currently contains over 135 million biblio-
graphic records, representing nearly 1.5 billion items
held by over 71,000 libraries (see their Facts and
Statistics Page for more details). Originally, WorldCat
records were available exclusively on a subscription
basis for 0CLC member organizations. Beginning in
2000, however, OCLC began a three-year project to
investigate the expansion of WorldCat into a "globally
networked, and globally available information re-
source" (see their report "Extending the OCLC coopera-
tive: A three-year strategy.") This project eventually
became known as Open WorldCat. In 2001, OCLC began
developing a prototype of a public web-based sys-
tem to perform simple queries and that would provide
holdings information for the nearest holding libraries
if users also entered geographic information. Between
2001 and 2002, OCLC also began partnering with on-
line booksellers such as Abebooks and Alibris to enable
users to search WorldCat records automatically when
their searches on the booksellers’ sites returned no
results.

OCLC signed an agreement with Google in 2003
to release a 2-million-record subset of its biblio-
graphic data to provide similar functionality to the
earlier pilot partnership with online booksellers. In
2004, Open WorldCat moved out of its pilot status
and went live, with OCLC signing similar agreements
with Yahoo!, Ask.com, and Microsoft. In 2005, OCLC
began incorporating records for electronic journals and
restricted participation in Open WorldCat to institu-
tions that subscribed to its FirstSearch service. OCLC
launched a beta version WorldCat.org in 2006, which
let users search the entire WorldCat database from a
freely available web interface for the first time.

The WorldCat Affiliate APIs

OCLC began making web services available to develop-
ers in early 2007. OCLC’s first two offerings were the
WorldCat Registry, which provided search and retrieval
of information about OCLC member institutions, and
xISBN, which retrieves ISBNs and other bibliographic
metadata for related versions of an individual work
held in the WorldCat database. In mid-2007, OCLC
added the OpenURL Gateway, which assists Web-based
applications in routing end users to full-text articles
and other online resources provided by libraries. OCLC
added xISSN in October 2007, which provides similar
functionality to xISBN but for serial publications (e.g.,
journals and magazines). OCLC’s most recent addi-
tion, as of August 2008, is the WorldCat Search API,
which allows developers to build applications that can

Using the OCLC WorldCat APIs

programmatically search and retrieve bibliographic
metadata and holdings information from the entire
WorldCat database.

xISBN and xISSN are two of OCLC’s Identifier
Services (also referred to as the "xID" or "xIdentifier"
services). OCLC also provides the xOCLCNUM subser-
vice under the banner of xISBN, which provides similar
functionality to works identified by either their OCLC
record number or their Library of Congress Catalog
Number. All of the Identifier services are free for non-
commercial use by all developers when usage does not
exceed 500 requests per day. Additionally, all OCLC
members with a cataloging subscription may use the
services for free without restriction, and OCLC accom-
modates commercial use or non-commercial usage be-
yond 500 requests per day on a subscription basis.

The Identifier APIs rely on an algorithm developed
by the OCLC Office of Research to group bibliographic
records using the conceptual model for Group 1 enti-
ties specified in the Functional Requirements for
Bibliographic Records. To use the service, a user sub-
mits an identifier as a URL parameter to the appropri-
ate web service along with parameters specifying the
appropriate method for the type of request to make
and the desired format of the response. Responses
can be returned as XML, HTML, CSV, or TSV, as well as
dictionaries/associative arrays in JSON, Python, Ruby,
or PHP syntax.

All the Identifier services have two common meth-
ods: getEditions, which retrieves a list of relevant
identifiers and metadata for editions of a work
specified a given identifier, and getMetadata, which
retrieves metadata about item specified by the given
identifier. xISBN and xISSN also provide fixCheck-
sum, which regenerates the appropriate check digit
for the specified identifier scheme. xISSN provides
a few additional methods including getForms, which
provides information of the physical form of the se-
rial specified by the identifier, and getHistory, which
provides information about preceding and succeeding
serials. xOCLCNUM also makes the getVariants method
available, which returns various identifier formats
for a given OCLC record number or Library of Congress
Catalog number.

For example, to construct an xOCLCNUM request for
OCLC record number 34745932, using the getEditions
method, and returning the results as a Python diction-
ary, we would issue an HTTP GET to the following URL:

http://xisbn.worldcat.org/webservices/xid/oclcnum
/34745932?method=getEditions&format=python

In response, we would get the following dictionary
back from xOCLCNUM:

JUNE 2009 « Python Magazine « 7

FEATURE

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

{'stat':'ok',
"list':[
{'oclcnum':['34745932"']},
{'oclcnum':['50174603"'1}1}

The WorldCat Search API and Registry
The WorldCat Search API is, more accurately, a set of
APIs that allow developers to search and retrieve bib-
liographic and holdings data from the entire WorldCat

Python Magazine beneath the worlds "Download this
month’s code", and look inside of the directory of this
article for a copy of holdingsmap.py (the demo pro-
gram we will investigate below) that already includes a
working key.

If you use the Python Magazine key when connect-
ing, then please limit yourself to only a few queries
per session! The key is limited to only about three

When my employer first gained access to the APIs provided by OCLC, |
chose to write a Python module to make development with the APIs

easier,

database. As of the time of writing, OCLC is currently
making the WorldCat Search API available only to
developers affiliated with member institutions with

a cataloging subscription. Developers can request an
OCLC Web Services key ("wskey") from OCLC through
the WorldCat web site. The Search API allows applica-
tions to search the WorldCat database programmati-
cally by submitting queries in formatted as either
OpenSearch or SRU (Search/Retrieve via URL) and CQL
(Contextual Query Language).

Instead of requesting a key for yourself, you can
also use the temporary key provided in the source
code bundle that goes with this issue of the magazine.
Visit the URL given on the title page of this issue of

1. <searchretrieveResponse ...>

2. <version>1.1</version>

3. <numberofRecords>5</numberofRecords>

4. <records>

Do ooo

6. <record>

7 <recordschema>info:srw/schema/1/dc</recordSchema>
8 <recordpacking>xml</recordPacking>

9. <recordbata>

10. <oclcdes>

11. <dc:creator>Sangameswaran, Ramaswamy P.

12. (Ramaswamy Pulikoot Madhom)</dc:creator>

13. <dc:date>1994</dc:date>

14. <dc:description>"December 1994."</dc:description>

15. <dc:description>Thesis (M.S.)--University of Arkansas,
16. Fayetteville, 1994.</dc:description>

17. <dc:format>ix, 60 leaves : i11. ; 28 cm.</dc:format>
18. <dc:language ...>eng</dc:language>

19. <dc:subject ...>Gases--Separation.</dc:subject>

20. <dc:subject ...>Gas separation membranes.</dc:subject>
21. <dc:subject ...>Polymers--Permeability.</dc:subject>
22. <dc:title>Penetrant induced effects of polyimides for gas
23. separation membranes </dc:title>

24,

25. </oclcdes>

26. </recordbata>

27. </record>

28. </records>

29. ...

30. </searchretrieveresponse>

8+ Python Magazine « JUNE 2009

hundred queries per day, and if you use more than
your share (maybe just two or three, to demonstrate
to yourself that the demo indeed works?) then other
readers will not be able to run the demo.

For the sake of brevity, this article will not discuss
the syntax of SRU URL parameters and CQL queries.
Detailed information on SRU and CQL as well as the
various search indexes available for SRU queries can
be found on the WorldCat Developers” Network wiki.
OpenSearch queries return either responses in Atom or
RSS, while SRU queries return results as SRU result sets
containing either MARCXML or Dublin Core XML records.
In addition, the WorldCat Registry can be searched
using SRU and CQL, while individual records can be
retrieved using a RESTful URL pattern. Individual re-
cords can be returned as formatted HTML or as XML for
parsing.

In addition, the WorldCat Search API also provides a

1. <holdings ...>

2. <holding>

3. <institutionIdentifier><value>AFU</value>...</institutionIdentifier>
4. <physicalLocation>University of Arkansas - Fayetteville

5. </physicalLocation>
6

7

8

<physicaladdress>
<text>Fayetteville, AR 72701 United States</text>
. </physicalAddress>
9. <electronicAddress>
10. <text>

11. http://www.worldcat.org/wcpa/oclc/325971907page=frame&url=http
12. %3A%2F%2F1ibrary.uark.edu%2Fsearch%2Fo32597190%26checksum%308df95d

13. 7d1a6a06656475h032a30f69a3& title=University+of+Arkansas+-+Faye
14. tteville& 1inktype=opac&detail=AFU%3AUniversity+of+Arkansas
15. +-+Fayetteville%3AAcademic&app=wcapi&id=foobar

16. </text>

17. </electronicAddress>

18. <holdingSimple>

19. <copiessummary><copiesCount>1</copiesCount></copiessummary>
20, </holdingSimple>

21. </holding>

22. </holdings>

FEATURE Using the OCLC WorldCat APIs

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

handler for "content requests" for bibliographic data,
holdings information, and formatted citations for
individual records specified by OCLC record number or
ISBN. For holdings information, the content request
must include some sort of geographically identifying
information, such as a name or code for a state, prov-
ince, or country, a postal code, latitude and longitude,
or an IP address. Responses for holdings information
are returned as an XML document conforming to the
IS0 20775 schema for holdings data. Citation re-
quests include an optional citation parameter, speci-
fying the format of the citation, with APA, Chicago,
Harvard, MLA, and Turabian formats available upon
specification.

Constructing an example SRU request for the
WorldCat Search API requires us to specify the search
indexes we need for the query. OCLC provides informa-
tion on the available indexes and a JavaScript-based
URL constructor for SRU requests, located at:

http://worldcat.org/webservices/catalog
/evaluator.html

For example, let’s construct an SRU request for works
in WorldCat with the words "Polyimides" in the title
and containing the keyword phrase "gas separation."
Let’s also say the value wskey was "foobar", and that
we wanted our result set to return records in Dublin
Core. With these parameters, the request URL for this
query would be:

http://worldcat.org/webservices/catalog/search/sru
?query=srw.ti%3dpolyimides%20and%20srw.kw%3d%22gas
%$20separation%22&wskey=foobar&recordSchema=info%3A
srw$2Fschema%2F1%2Fdc

Issuing an HTTP GET request would then return results
similar to those shown in Listing 1.

To get the holding information for this particular
work, we would then generate a holdings request for
the OCLC record number specified in the bibliographic
data, 32597190. Accordingly, we would send an HTTP
GET request to:

http://worldcat.org/webservices/catalog/content
/libraries/32597190?&wskey=foobar

which would return the response shown in Listing 2.

In this response, we can see basic information about
the institution, including its OCLC symbol and general
address information. To retrieve detailed information
about the institution in XML, we must therefore submit
a request to the RESTful interface to the WorldCat
Registry, passing the OCLC symbol ("AFU") as part of
the URL request:

http://www.worldcat.org/webservices/registry/lookup
/Institutions/oclcSymbol/AFU?serviceLabel=content

Using the OCLC WorldCat APIs

The response, which I will not bother to include, con-
tains detailed contact information, branch informa-
tion, catalog links, and, if available, administrative
statistics for the specified institution.

worldcat: A Python Module for OCLC
APIs

When my employer first gained access to the APIs
provided by OCLC, I chose to write a Python module
to make development with the APIs easier. This was in
part motivated by the fact that OCLC's Identifier APIs
could return Python dictionaries as responses!

I made the initial public release of the worldcat
module in August 2008, shortly after OCLC made the
WorldCat Search API available to the public. worldcat
is dual-licensed under the GNU General Public License
version 3 and the Modified (three-clause) BSD License.
worldcat has few dependencies, only requiring the
pymarc module for some of the helper functions
for processing data returned in MARCXML from the
WorldCat Search API. However, having an ElementTree
implementation installed (such as the one that comes
with the Python Standard Library in Python 2.5 and
higher) is strongly encouraged, as much of the data
from OCLC’s APIs is returned in highly structured XML.

worldcat provides a number of different classes
to construct requests to the OCLC APIs. All of the
request classes, SearchAPIRequest, xIDRequest,
and RegistryRequest, are subclassed from a
WorldCatRequest. Each of these subclasses is further
subclassed to the specific types of requests that the
APIs can handle. For example, the SearchAPIRequest
has SRURequest, OpenSearchRequest, and
ContentRequest subclasses, with the latter further
subclassed to handle the different types of content re-
quests. The WorldCatRequest class defines a number
of methods, some of which are overridden by the indi-
vidual subclasses. The two methods most developers

LISTING 3

1. § wc/bin/python

2. >>> from worldcat.request.xid import xOCLCNUMRequest
3. >>> from pprint import PrettyPrinter

4. >>> pp = PrettyPrinter(indent=2)

5. >>> 0 = XOCLCNUMRequest (rec_num="34745932")

6. >>> o.validate()

7. >>> r = o.get_response()

8. >>> pp.pprint(r.__dict_)

9. { 'data': { "list': [{ "isbn': ['9780824794668'],
0. "Teen': ['96018710'],

11. ‘oclcnum': ['34745932'1%,
12. { "isbn': ['9780585399645'],
13. ‘oclcnum': ['50174603']1}]1,
14. 'stat': 'ok'},

15, 'eval': True,

16. 'method': 'getEditions',

17. 'response_format': 'python'

18. 'response_type': 'XOCLCNUMRequest'}

JUNE 2009 « Python Magazine « 9

FEATURE

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

will want to use are the validate() method and the
get_response() method; the latter returns the appro-
priate subclass of a WorldCatResponse object.

Submitting Requests

To work through the following examples, we will in-
stall virtualenv and create a virtual environment

for worldcat and the all other modules we will need
for the examples. We'll also grab a copy of the lat-

est copy sources for a later example using Mercurial, a
distributed version control system. This walk-through
assumes that you are using Python 2.6. To get started,
run the following:

$ easy_install virtualenv

$ virtualenv wc

$ wc/bin/easy_install mercurial

$ wc/bin/easy_install pymarc

$ wc/bin/easy_install worldcat

$ wc/bin/hg clone \
http://bitbucket.org/anarchivist/worldcat \
wc/worldcat

We will first recreate the xOCLCNUM request that we is-
sued earlier. By default, the xID requests in worldcat
return the response as a Python dictionary that is then
parsed using a "safe eval" function. Additionally, the
default API method called for worldcat xID requests is
the getEditions method. Any of this behavior may be
overridden when you construct a request.

To construct the request, we’ll start Python from
within our virtual environment. Then we must import
the xOCLCNUM request, pass the appropriate argu-
ments, and run some basic validation on the request.
Next, we submit the request to the xOCLCNUM service,
and pretty-print the response object. Take a look at
Listing 3 to see what the result looks like.

Let’s also construct an SRURequest based upon the

LISTING 4

. >>> from worldcat.request.search import SRURequest

. >>> pp = PrettyPrinter(indent=2)

>>> s = SRURequest(wskey="foobar")

. >>> s.args['query']="srw.ti=polyimides and srw.kw="gas separation"'
. >> s.args['recordSchema']="info:srw/schema/1/dc’

. >>> s.validate()

. >>> r = s.get_response()

8. >>> pp.pprint(r.__dict_)

9. { 'data': ' (big block of XML, Tike that in Listing 1) '

No s wN e

10. 'eval': False,
11. 'record_format': 'dc',
12, 'response_format': 'xml',

13, 'response_type': 'SRURequest'}

14. >>> from worldcat.util.extract import extract_elements

15. >>> x = extract_elements(r.data,

16 ooo "{http://purl.org/dc/elements/1.1/}title")

17. >>> pp.pprint(x)

18. [<Element {http://purl.org/dc/elements/1.1/}title at f230d0>,
19. <Element {http://purl.org/dc/elements/1.1/}title at f233a0>,
20. <Element {http://purl.org/dc/elements/1.1/}title at f239e0>,
21. <Element {http://purl.org/dc/elements/1.1/}title at f23e40>,
22. <Element {http://purl.org/dc/elements/1.1/}title at 1951418>]
23. >>> x[4].text

24. "Penetrant induced effects of polyimides for gas separation membranes

10 « Python Magazine « JUNE 2009

SRU query that we sent to the APIs earlier. Like with
the xOCLCNUM request, we must import the appropri-
ate subclass. Since the WorldCat Search API requires
authentication, we must construct our request with
our wskey. Next, we will run some basic validation

on the request, make the request, and examine the
results. Unlike requests to the xID services, worldcat
does not automatically parse the actual response data
in SearchAPIResponse objects. Instead, it returns the
XML response as a string.

worldcat also provides a utility function called
extract elements() to parse responses using
ElementTree if desired. Take a look at Listing 4 to see
how these tools can be made to work together to re-
trieve a WorldCat result and then parse its XML.

Given that we've received the same record set as the
earlier example, we can also construct requests for
holdings information using the same record that we
specified before. Again, you can either fill in a wskey
that you yourself apply for, or use the key you'll find
in the source code bundle on the Python Magazine web
site for this article (in which case, please be gentle
with it, and limit yourself to a few uses per day):

>>> from worldcat.request.search \
. import LibrariesRequest
>>> 1 = LibrariesRequest(wskey=\"...\",
cen rec_num=\"32597190\")
>>> 1l.validate()
>>> r = l.get_response()
>>> pp.pprint(r._ dict_)
{ 'data': ' (big block of XML, like in Listing 2) ',
'eval': False,
'record_format': 'iso20775',
'response_format': 'xml',
'response_type': 'LibrariesRequest’}

Finally, let’s submit a request for the registry informa-
tion for the institution with holdings for this item:

>>> from worldcat.request.registry \
import OCLCSymbolRequest
OCLCSymbolRequest (symbol=\"AFU\")
o.get_response()

>>> o
>>> r

If you examine the XML that this leaves in r.data,
you will see a standard WorldCat institution descrip-
tion ready to be parsed and have useful information
extracted by a Python program.

Putting it Together, Making a Map

Now that we've covered the basics of generating re-
quests and receiving requests from OCLC’s APIs using
worldcat, we can start building complete applications
to reuse data from the available APIs. worldcat is
distributed with two sample applications, and the rest
of this article will discuss the implementation of one
of them. The application, holdingsmap.py, is a web
application that allows you to find holding libraries for

FEATURE Using the OCLC WorldCat APIs

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

FEATURE Using the OCLC WorldCat APIs

variants of a work, given its OCLC record number and _

a United States ZIP code. Beyond OCLC's APIs, the ap-

. R o 1. <!-- excerpts from "holdingsmap/templates/index.html" -
plication uses two additional APIs. 2. ik bt sontoctensmsrdatal oclen 16 rietatret]
. . 3. <link href="/json?oclcnum=$rdatal'oclcnum']&zip=$rdatal'zip']"
First, it uses the Google Maps API to geocode and, 1 e by e W 4
indirectly, to render holding location information for a - weript
given work. 7. src="http://static.simile.mit.edu/exhibit/api-2.0/exhibit-api.js"
. - 8. type="text/j ipt" ipt
Second, it uses the SIMILE Exhibit API to parse i el
and plot the data gathered from the OCLC APIs into 10. src="http://static.simile.mit.edu/exhibit/extensions-2.0/map/map-
) 11. extension.js?gmapkey=$rdata['key']"
a form the Google Maps API can consume. While the 12, type="text/javascript"></script>

user’s browser initially renders the page contain-

also loads a JSON object with a particular structure 000 Hoiing ibrares

- | b | & R 4+ P e iocalkos BOS0] S —

used by Exhibit. Exhibit’s developers also provide a

hosted data translation service called Babel to as- Hplding libraries:

sist in the translation from other data formats to Search for an
Exhibit JSON. Exhibit JSON objects are then passed to o
Exhibit’s JavaScript API, which parses the object into 0eLe mmber

ZIP code {Search)

memory as an Exhibit database. The Exhibit API calls
an externally hosted "painter service" to generate the
map markers on the fly. This painter service, along
with Exhibit API's map extension, act as an abstrac-
tion layer on top of the Google Maps API, allowing
developers to focus on preparing their data for dis-
play. Exhibit’s behavior therefore makes it well suited

for prototyping interfaces for visualizing data using _
maps. In addition, since Exhibit’s API is written in

000 Lazatians far OCLC record 48138951 neas 20001

JavaScript, developers can extend or override behavior <[] (2 () () oo (& cono

fairly easily. Holding libraries for record 48138951 near 20001
In addition to worldcat, this application relies on a

few additional third-party modules for its functional- c‘f‘:": e
ity: web.py, a lightweight, Pythonic web application st
framework, and geopy, a Python module for geocod- s . L
ing. In addition, if you not using Python 2.6 or later, ST B
you will need to install simplejson, a JSON parsing R

module, and processing, a module that provides pro- 2P eode 20051 | (G

cess spawning using an API similar to the threading
module included in the standard library.

To get started, we will install the additional modules
in our virtual environment:

s WC/bin/easy_inStall veb _
$ wc/bin/easy_install geopy

Lazatians far OCLC record 48138951 neas 20001

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

x|l e 5|+ | @ nupiocanos 3893 ~fC:r Coogie
Note that, as of the time this magazine is going to Holding libraries for record 48138951 near 20001
press, the command above to install geopy fails be- S0
cause the host name exogen.case.edu is failing to re- ot “ S BT ey

- = Beown. John Rusell, higw g

solve. In such an emergency, you can also try directly S s P
: : . AT Mok, EFLii” %% George Washington University
installing the current development version of geopy Reuslde, 1555 &))
which is hosted somewhere a bit more robust: Find holdings for IR L ol ek paw

X OCLE rumber
$ easy_install \ P code 0001 | (Search)

http://geopy.googlecode.com/svn/tags/release-0.93/

To use holdingsmap.py, we will need to modify the
script to store our OCLC wskey and our Google Maps
API key. To make these changes, edit lines 45 and 46

JUNE 2009 « Python Magazine « 11

of holdingsmap.py. (As mentioned above, the copy of
holdingsmap.py that you can download with this issue
from the Python Magazine web site already has a wskey
set, but be careful to use it only a few times per day
so as not to lock out other readers who want to try the
demo.) Now that we've made these changes, we can
launch the application and begin trying to find hold-
ings for individual works:

$ cd wc/worldcat/examples/holdingsmap
$../../../bin/python holdingsmap.py \
http://0.0.0.0:8080/

near the ZIP code 20001. Once we submit the request,
we will get a result something like what is shown in
Figure 2.

If we click on one of the map markers, a call-out
box appears, containing brief information about the
institution and a link to the institution’s online library
catalog, as shown in Figure 3.

How It Works

To see how the application works, look at the
holdingsmap.py source code, either in the source
package you can download for this issue of Python

0CLClaunched a beta version WorldCat.org in 2006, which let users
search the entire WorldCat database from a freely available web

interface for the first time.

And, yes, it is necessary to actually cd to the directory
as shown here, because otherwise the web application
will be unable to find the accompanying templates di-
rectory that contains its HTML files.

Now that the application is running, you can open a
web browser on the same machine as the Python script
is running and begin looking up locations for items:

http://localhost:8080/

You can see what the interface looks like in Figure 1.
To try this out, let’s search for holdings for the OCLC
record number 48138951 (New Sites for Shakespeare
Theatre, the Audience, and Asia by John Russell Brown)

. # Sample JSON response from the holdingsmap.py back to the browser

q

1

2

3

4 "items": [

5. {

6. "numberofcopies": "1",

7 "oclcid": "AFU",

8. "Tabel": "University of Arkansas - Fayetteville",

9. "addressLatLng": "36.065475,-94.15567",
10. "Tink": "http://www.worldcat.org/wcpa/oclc/32597190?page=frame&\

11. url=http%3A%2F%2FTibrary.uark.edu%2Fsearch%2F032597190%26checksum?%3D8\
12. df95d7d1a6a06656475b032a30f69a3&tit1e=University+of+Arkansas+-+Fayett\
13. eville&linktype=opac&detail=AFU%3AUniversity+of+Arkansas+-+Fayettevil\
14. Te%3AAcademic&app=wcapi&id=foobar",

15. "address": "Fayetteville, AR 72701 United States"

16. "type": "library"

18. 1,
19, "types": {

20. "Tibrary": {

21. "pluralLabel": "libraries"
22.

23. '}

24, }

12« Python Magazine « JUNE 2009

Magazine, or in the example code packaged with the
worldcat package itself. This 130-line listing is an en-
tire web application that interfaces with both the OCLC
and with Google Maps! To run, it needs only the two
template files index.html and locations.html that
accompany it, in the adjacent templates directory,
and that contain the actual HTML of its web pages.

The form rendered by holdingsmap.py sends an
HTTP GET request to:

http://localhost:8080/locations

The form submission includes an oclcnum and zip sent
as HTTP query parameters. This then calls the GET()
method from the locations class (see line 104 of
holdingsmap.py). This method first sends a geocoding
request to the Google Maps API for the ZIP code sub-
mitted by the user. Next, it sends a CitationRequest
to the WorldCat Search API to return a formatted
citation for the work, and an xOCLCNUMRequest

to the xISBN service to retrieve OCLC record num-

bers for related works. The method gathers this data
into a dictionary that is passed as an argument to

a rendering function provided by web.py. The user’s
browser receives the response using the template in
index.html, and the browser sends a second request
to http://localhost:8080/json with the same query
parameters as the initial request.

How do we tell the browser to load the JSON URL?
By providing it as a “link” element up in the header, as
you can see in line 3 of Listing 5.

holdingsmap.py responds to this JSON request

FEATURE Using the OCLC WorldCat APIs

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

using the GET() method of the json class (line 92). It
first creates a dictionary containing the structure of
information required by Exhibit’s JSON format. Next, it
gathers data from a LibrariesRequest, which returns
holdings data for the item specified by the OCLC record
number. The XML response is parsed using ElementTree,
which provides a list of Element objects. A pool of
worker processes applies the process libraries()
over the list of objects. This function extracts data
about each institution that holds the work, such as
the OCLC organization symbol, the address of the insti-
tution, and, if applicable, a link to the work’s record in
the institution’s online catalog.

The function then issues an OCLCSymbolRequest
to attempt retrieval of latitude and longitude data
from the WorldCat Registry. If this data is not found,
it then sends a geocoding request to the Google Maps
API for the address specified in the holdings infor-
mation. Once all this data is gathered, json.GET()
calls a web.py function to set the content type of
the response, and renders the Python dictionary as a
JSON object using simplejson. A sample Exhibit JSON
object for the holdings information for OCLC record
number 32597190 can be seen in Listing 6.

Conclusion and Future Developments

By now we have covered the basics of using worldcat
to interact with several of the APIs that OCLC makes
available to assist developers in reusing bibliographic
and holdings data from the WorldCat database. As time
goes on, I certainly hope more developers find in-
novative ways to reuse this data. So far, the worldcat
module leverages only about a half of the available
APIs. In addition to the WorldCat Search API, the xID
Services, and the WorldCat Registry, there are three
other web services provided by OCLC that are under ac-
tive development.

WorldCat Identities provides an "identity" or pro-
file page of a particular person or organization based
on relationships within the bibliographic data held
in WorldCat. The human-readable view of the pages
in WorldCat Identities provides an overview of that
person or organization’s published works, a timeline
that displays information about publications by or
about the profilee, a list of commonly held titles for
that profilee, and links to other identities associated
with that person or organization. In addition to the
human readable view of the Identities data, OCLC also
provides an SRU search interface that returns the data
in XML.

Terminology Services is an experimental web service
for working with controlled vocabularies. Terminology
Services allow users to search descriptions of, as well

Using the OCLC WorldCat APIs

as terms within, controlled vocabularies; retrieve an
individual term within a controlled vocabulary using
its identifier; and view relationships between terms
such as equivalence, hierarchical relationships, and
associative relationships. Like WorldCat Identities
and the WorldCat Search API, Terminology Services
provides an SRU interface to search the vocabulary
descriptions and terms. Available vocabularies include
Library of Congress Subject Headings, Medical Subject
Headings, and several other vocabularies containing
form and genre terms. Users can retrieve informa-
tion about controlled vocabulary terms in a number
of representations, including HTML, MARCXML, SKOS,
and Zthes. Furthermore, OCLC also intends to expand
Terminology Services to return data in other represen-
tations such as BS 8723-5, MARC (IS0 2709), MADS,
and MODS.

OCLC also provides an experimental metadata cross-
walk service. The Crosswalk Web Service allows devel-
opers to translate a group of metadata records from
one format to another. For this service, OCLC defines a
"metadata format" as a triple of a standard (like MARC
or the Dublin Core), a structure (like XML or IS0 2709),
and an encoding (MARC-8 or UTF-8 or whatever). This
service is a SOAP-based service, and OCLC has provided
a WSDL file to assist in the automatic generation of
client code for this experimental service.

Finally, OCLC is also encouraging developers to use
their APIs through participation in the Third OCLC
Research Software Contest. The contest challenge is
"to use an OCLC resource to create a Web service that
does something interesting, innovative, and useful."
The winner of the award will receive a US$2,500 prize
and have the opportunity to visit OCLC Research in
Dublin, Ohio to discuss their contest entry with OCLC
staff.

Given the other available APIs and the Software
Contest, I anticipate that I will continue develop-
ing worldcat for quite some time. Potential changes
include creating a separate SRU client Python module
and developing further sample applications for devel-
opers to explore. I hope you enjoyed learning about
the APIs and the module — let’s show OCLC what we
can do with Python!

JUNE 2009 « Python Magazine « 13

FEATURE

Licensed to 53763 - Mark Matienzo (mark.matienzo@gmail.com)

