Using and Developing with Open Source Forensics Software in Digital Archives Programs

Mark A. Matienzo, Yale University Library
Open Source Digital Forensics Conference
Chantilly, VA
October 3, 2012
About Me

- I am an archivist
- Occasionally I develop software
- I am not a digital forensics “expert”
Digital Archives at Yale
Digital Forensics in the Archival Domain

- Increasing use of digital forensics tools/methodologies within the context of digital archives programs (Kirschenbaum et al. 2010)

- Barriers to adoption: cost, complexity, need for additional tool development (Kirschenbaum et al. 2010; Daigle 2012; Lee et al. 2012)

- BitCurator project: http://bitcurator.net
Initial Goals

- Focus on implementation of and development with open source digital forensics software at Yale University Library
- Work must support accessioning, arrangement, description, and management of born-digital archival material
- Material received on physical media as primary focus
Design Principles

• Digital objects needing management are both disk images themselves (Woods, Lee, and Garfinkel 2011) and bitstreams that they contain

• Intention of forensic soundness, but assumption that much of the state is lost

• Curation micro-services (Abrams, et al. 2010) as philosophical basis to guide our thinking
Micro-services as Design Philosophy*

<table>
<thead>
<tr>
<th>Principles</th>
<th>Preferences</th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Granularity</td>
<td>• Small and simple over large and complex</td>
<td>• Define, decompose, recurse</td>
</tr>
<tr>
<td>• Orthogonality</td>
<td>• Minimally sufficient over feature-laden</td>
<td>• Top down design, bottom up implementation</td>
</tr>
<tr>
<td>• Parsimony</td>
<td>• Configurable over the prescribed</td>
<td>• Code to interfaces</td>
</tr>
<tr>
<td>• Evolution</td>
<td>• The proven over the merely novel</td>
<td>• Sufficiency through a series of incrementally necessary steps</td>
</tr>
<tr>
<td></td>
<td>• Outcomes over means</td>
<td></td>
</tr>
</tbody>
</table>

*UC Curation Center/California Digital Library, 2010
Workflow

Start accessioning process → Retrieve media → Assign identifiers to media → Media

Write-protect media → Record identifying characteristics of media as metadata → Create image

Verify image → Extract filesystem- and file-level metadata → Package images and metadata for ingest → Ingest transfer package

Disk images, Meta data, Transfer package

Document accessioning process → End accessioning process
Disk Image Acquisition

- Requires a combination of hardware (drives/media readers, controller cards, write blockers) and software
- In some cases, hardware requires specific software (e.g. floppy disk controller cards that sample magnetic flux transitions)
- Goal: sector image interpretable by multiple tools
Disk Images

• Acquired 1,039 disk images from across 69 accessions at Manuscripts and Archives
Initial Work with Disk Images

- Experimentation with various tools: The Sleuth Kit (3.1+), Autopsy, Pyflag, bulk_extractor ...
- Basic integration/processing with shell scripts or Python
- Discovering fiwalk was my “eureka” moment
Metadata Extraction

• Used fiwalk and other open source tools to characterize media, volume, file system, and file information

• Attempt to repurpose this information as descriptive, structural, and/or technical metadata to support accessioning, appraisal, and processing

• Extracted metadata expressed in Digital Forensics XML

• Easily extensible and straightforward to process
File Systems

- Ran metadata extraction on 812 images
Extraction Plugins

• Created fiwalk plugins to perform additional analysis and evaluation of files/bitstreams within disk images

• Virus identification plugin using ClamAV/pyclamd

• File format identification against PRONOM format registry using Open Planets Foundation’s FIDO

• Code (including additional plugins) available online: https://github.com/anarchivist/fiwalk-dgi/
File Analysis

• Ran enhanced metadata extraction on 619 images (using our plugins)

• Performed analysis on 49,724 files within images

• Successfully identified 43,729 files (147 unique file types) against PRONOM format registry

• Identified 9 files as containing virus signatures (2 unique virus signatures)
Identified MIME Types by OPF FIDO (36320 total matches)
Gumshoe

• Prototype web application to provide search/browse interface to metadata extracted from disk images
• Built as a Ruby on Rails application using Blacklight
• http://github.com/anarchivist/gumshoe
Blacklight

- http://projectblacklight.org
- Ruby gem for use in Rails applications
- Provides discovery layer over Solr indexes, with support for faceting, bookmarking, etc.
- Use is fairly common in library community
- Implementers include Stanford, Columbia, NC State, UVA, WGBH, National Agricultural Library (AGNIC) ...
Indexing Process

1. Start indexing process
2. Disk Image or DFXML?
3. Extract metadata to DFXML
4. Parse DFXML
5. Disk Image or DFXML
6. Extract strings?
 - Yes: Perform string extraction
 - No: Normalize output for each file
7. Normalize output for each file
8. Construct Solr document for each file
9. Post documents to Solr
10. End indexing process
Data Normalization

• Depends on DFXML gem

• Translate metadata-layer data to more easily searchable or human-readable version (e.g. file type/file system codes to text labels; certain flags to booleans)

• Data type conversion (e.g. integers-as-strings to integers)

• Prepend full path data to filename

• Transform timestamps to ISO8601
Features

- Basic browse view, with sorting by filename, size, modification/access/creation times
- Faceting by disk image, extension, file format, file type
- Basic bookmarking
- Searching based on metadata values (e.g. checksums), file content (still under development; somewhat slow)
Limit your search

Image File
- ubnist1_casper_rw_gen2 (1,210)
- nts1_gen2 (39)

Extension
- Format data (453)
- empty (139)
- ASCII text (112)
- XML document text (58)
- JPEG image data, JFIF standard 1.02 (48)
- JPEG image data, JFIF standard 1.01 (34)
- ASCII English text (29)
- GNU dbm 1.x or ndbm database, little endian (26)
- HTML document, ASCII text, with very long lines, with CRLF, LF line terminators (22)
- PDF document, version 1.4 (22)

Type
- Regular file (793)
- Directory (381)
- Shadow (28)
- Symbolic link (24)
- Unknown type (22)
- Named FIFO (1)

<table>
<thead>
<tr>
<th>Sort by</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaying items 1 - 10 of 1,249</td>
<td></td>
</tr>
</tbody>
</table>

1. **/home/ubuntu/Desktop/MyStuff/SEC Documents/spch121708cc-idata.wmv**
 - **Filename**: spch121708cc-idata.wmv
 - **Full Path**: /home/ubuntu/Desktop/MyStuff/SEC Documents
 - **Image file**: ubnist1_casper_rw_gen2
 - **Type**: Regular file
 - **Size (bytes)**: 37887210
 - **Inode number**: 15697
 - **MD5**: 8e7d1611c0b870f658529d94556f9a21
 - **Format (libmagic)**: Microsoft ASF
 - **Modification Time**: 2008-12-17T17:10:00Z
 - **Access Time**: 2008-12-29T05:35:21Z
 - **Change Time**: 2008-12-29T05:35:21Z

2. **/Compressed/logfile1.txt**
 - **Filename**: logfile1.txt
 - **Full Path**: /Compressed
 - **Image file**: nts1_gen2
 - **Type**: Regular file
 - **Size (bytes)**: 21888890
 - **Inode number**: 48
Advantages

• Faster (and more forensically sound) to extract metadata once rather than having to keep processing an image

• Possibility of developing better assessments during accessioning process (significance of directory structure, accuracy of timestamps)

• Integrating additional extraction processes and building supplemental tools is simple
Limitations

- Use of tools limited to specific types of file systems
- Requires additional integration and data normalization to work with additional tools
- DFXML is not (currently) a metadata format common within domains of archives/libraries; somewhat in flux
- Extracted metadata harder for archivists to repurpose in some cases based on level of granularity
- Still struggling with how to best present data to archivists
BitCurator

- http://bitcurator.net
- Currently under development; preview releases available
- Provides unified environment (VM) with tools for disk imaging, data triage, PII identification, metadata extraction, etc.
- Uses familiar tools: Sleuth Kit, Guymager, fiwalk, sdhash ...
Thanks!

Mark A. Matienzo
mark@matienzo.org
http://matienzo.org
@anarchivist
References