Hydra in a Box:
Building A Next-Generation Platform for Digital Collections

Hannah Frost, Stanford University
Gretchen Gueguen, DPLA
Mark A. Matienzo, DPLA
DPLAFest 2016 — April 14, 2016
Project Overview

- A Time for Change
- The Vision
- Project Partners
- Project Goals
- Timeline
A Time for Change

- Conversations between Stanford University, DPLA, and DuraSpace informed project design
- Current digital collections platforms originate in an earlier phase of the web, which explain current limitations
- Infrastructure needs in the DPLA Hub network
 - Legacy systems unable to leverage modern affordances of the web
 - Lack of scalable and sustainable aggregation workflows
 - Lack of support for linked data and metadata enrichment
 - Perceived lack of “obvious choices” for replacement systems for digital collections
The Vision

● A product and service that is easy to use, easy to integrate, and that
● Reduce barriers (including cost) to DPLA contribution
● Allow digital collections to be not just on the web, but of the web
● Expand and diversify both the DPLA and Hydra communities
Project Partners
Project Goals

- Development of turnkey, Hydra-based application that leverages and improves on core components
- Development/integration of metadata aggregation & enrichment tools
- Connect components with DPLA hubs, current Hydra partners, and prospective Hydra adopters
- Work toward a hosted service
Timeline

- May 2015-November 2017 (30 months)
- Development: March 2016-November 2017
- Service development and community engagement: throughout project
Design Phase

Discovery Phase (Fall 2015)

● Literature review and product/service analysis
● Surveys, interviews, and focus groups
● Community outreach

Information Architecture (Winter 2016)

● User requirements and personas
● Requirements - functional & technical
● Models and wireframes

Visual Design (Spring 2016)
Hydra-in-a-Box Design Process: Tasks & Timeline

Discovery
- **Phase 1**
 - Stakeholder goals
 - Community & landscape surveys
- **Phase 2**
 - Interviews & focus groups

Information Architecture
- **Phase 1**
 - User personas
 - Requirements prioritization
- **Phase 2**
 - Conceptual sitemaps
 - Wireframes

Visual Design
- **Phase 1**
 - Visual design mockups
 - Visual design style guide

Infrastructure & Technical Exploration
- **Phase 1**
 - Community engagement
 - Collaborative development on core gems
- **Phase 2**
 - Technical prototyping
- **Phase 3**
 - Gap analysis
 - Community feedback

Development
- **Phase 1**
 - Formal development & user testing

Timeline:
- **Discovery:**
 - Phase 1: Summer 2015
 - Phase 2: Fall 2015
- **Technical Exploration:**
 - Phase 1: Winter 2015
 - Phase 2: Winter 2016
 - Phase 3: Spring 2016
- **Information Architecture:**
 - Phase 1: Winter 2015
 - Phase 2: Winter 2016
Key Areas of Progress

Design, Requirements and Specifications team:

- Community survey insights
- Analysis of user interviews, focus groups
- Content types requirements for data modeling
Community Survey

256 complete responses

311 repositories

Mostly small, US academic libraries
Survey Insights

● Expectations of our project

● Satisfaction levels
 ○ Users of hosted services tend to be more satisfied than users of local deployments

● Strengths and weaknesses of existing repository options

● 53% plan to migrate to another system
 ○ Most to a Fedora-based solution
 ○ Rest are “not sure” what’s next
User Interviews

- Completed 21 individual or small-group interviews and 4 focus groups
 - 55 individuals in total
 - 46 institutions in the US and Canada
 - 29 hours of recorded content

- Interviews held either in-person or through videoconference; focus groups held in-person

- Coded and analyzed process to further identify potential requirements
Content Analysis Visualizations
“... How many of these different systems do you need? You can have your digital collections with images and documents, you can have your IR, you can have your digital preservation system, and you can add Omeka on top of that to do exhibits. It's just too much to have four or five different systems.”
Content Type Analysis

<table>
<thead>
<tr>
<th>IMAGES</th>
<th>digital photo</th>
<th>digital photo album</th>
<th>scanned poster</th>
<th>scanned postcard</th>
<th>scanned looseleaf manuscript</th>
<th>scanned folder of archival docs</th>
<th>scanned photo album (pages)</th>
<th>scanned scrapbook (pages and clippings)</th>
<th>scanned newspaper</th>
<th>scanned monograph with cleaned OCR</th>
<th>scanned monograph with text</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECT STRUCTURE</td>
<td></td>
</tr>
<tr>
<td>single file</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>multi-file, sequenced, flat</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>multi-file, unsequenced, flat</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>multi-file, hierarchical</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>DESCRPTIVE METADATA</td>
<td></td>
</tr>
<tr>
<td>basic ("core")</td>
<td>yes</td>
</tr>
<tr>
<td>geo</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>serial (volume, issue, etc.)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>archival order/hierarchy</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>DELIVER DERIVATIVES</td>
<td></td>
</tr>
<tr>
<td>maybe</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>APPLICATION BEHAVIOR (ITEM LEVEL)</td>
<td></td>
</tr>
<tr>
<td>zoom</td>
<td>yes</td>
</tr>
<tr>
<td>front/back</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>page turn</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Early Technical Exploration

● Deploying to the Cloud
 ○ Leverage services for institutions without local infrastructure

● Simplifying installation and configuration
 ○ Users should not need to be technical to set up and maintain an instance

● Determining a starting point for application development
 ○ Build on existing community-based work if possible
 ○ Sufia 7.0 - actively under development
Repository Development

- Assembled an all-star technical team
 - 10 Engineers: software development, data modeling, development operations
 - Contributions from other institutions (Penn State, maybe others)
 - Led by Michael Giarlo

- First work cycle: March - June 2016
 - Series of one-week sprints
 - Recorded demos of iterative progress, available to the public

- First milestone: Deploy our application based on Sufia 7 to the cloud
 - Priority content types
 - Configuration UI
 - Administrative dashboard
 - Batch import
Follow our progress

TECHNICAL UPDATE (4/8/2016) AND SPRING PROGRESS REPORT

Apr 8, 2016

The Hydra-in-a-Box technical team’s sprint 3 demo—showing deployment to Amazon Web Services, multi-tenant, the configuration user interface, and Sufia’s new batch upload workflow—is now available.
Aggregator Needs

- More flexible mapping standard than XSLT
- Ability to harvest from multiple sources
- Reconciliation services that utilize linked data
- Enhanced quality control tools
- Ability to normalize and create consistencies in data values
- Easily get data in and out
- Robust enough to handle multiple feeds and multiple sources
- Processes to move data from one repository to another resemble aggregation workflows
DPLA’s Aggregation System, Heiðrún

Three Main Functions

- **Harvest**
 - Source agnostic

- **Map**
 - Mapping DSL expressed in Ruby
 - Maps to RDF triples

- **Enrich**
 - Modular enrichments written to normalize and enhance data
Roadmap

● Completing requirements now

● April - July
 ○ Design remaining infrastructure
 ○ Develop user interface requirements further

● August - November
 ○ Develop dashboard tools
 ○ Analyze convergence points with repository
 ○ Plan for improvements to QA interface
 ○ Begin User Testing

● November - March 2017
 ○ Develop QA improvements
 ○ Refine interfaces and infrastructure
 ○ Implement job scheduling
Developing a Hosted Service

- Project partners collaborating to develop requirements for a cloud-hosted service based on the repository product under development
- Market research underway, starting with analysis of information discovered during the design phase
- Evaluating tiered service models depending on needs of potential adopters
- Significant technical work to focus on develop a shared, maintainable, and scalable service
More Information

Visit our website and blog: http://hydrainabox.org/

Follow us on Twitter: @HydraInABox

Public information list
hybox-info@googlegroups.com

Contact us
hybox-contact@googlegroups.com
Thank You!

Hannah Frost
hfrost@stanford.edu
@feefifofannah

Gretchen Gueguen
gretchen@dp.la
@G_AmSpinnrade

Mark A. Matienzo
mark@dp.la
@anarchivist