

Platform for Open Discovery

Anthony Helm, Brown University Elisabeth Long, University of Chicago Emily Morton-Owens, UPenn Esmé Cowles, Princeton University Hector Correa, Brown University Joe Zucca, UPenn Mark A. Matienzo, Stanford University Simeon Warner, Cornell University Tim McGeary, Duke University Tom Cramer, Stanford University

PLATFORM FOR OPEN DISCOVERY

POD is working to create a **platform** that positions **data reuse** and **service integration** as strategic assets. Through **open, iterative development** and leveraging the investment in our libraries' internal capacities, we will meet multiple library needs and enable innovation in ways that cannot be done through a series of one-off solutions or relying on vendors and external systems.

In Other Words...

- 1. Gather data from IPLC institutions
- 2. **Pool** the data for easy reuse
- 3. Enrich the aggregated data
- 4. **Deploy** to support varying needs

and do this in a way that...

- 5. Enables innovation by reducing friction
- 6. Builds capacity within IPLC
- 7. Recognizes **data as a reusable asset**

USE CASES

- 1. Resource sharing: discovery
- 2. Collections analysis
- 3. Linked data & data sharing
- 4. Data mining
- 5. Al

ONE DATA FEED, MANY POSSIBLE USES

DATA FLOW

DATA FLOW: ILL DISCOVERY

PROJECT STATUS

- Organization: 9 participating institutions with lightweight org and governance
- Data: 75M records amalgamated from 9 sources + Hathi Trust
- Proof-of-concept Blacklight environment operational (!), proves approach
- Consensus requirements for data feeds and interaction with ILL fulfillment
- Explore possible extensions beyond ILL into collections analysis
- Build data lake for aggregating and syndicating data feeds (*work in progress*)

DATA LAKE MVP DEVELOPMENT

A **data lake** is a repository for structured, unstructured, and semi-structured data, allowing data to be in its rawest form without needing to be converted and analyzed first.

Source: https://learn.g2.com/what-is-a-data-lake

THE DATA LAKE MVP ELEVATOR PITCH

The POD Data Lake MVP will produce a openly developed **minimum viable product** to **receive and transmit MARC bibliographic and holdings data** from multiple institutions.

It will support **receiving and transmitting both full dumps and delta change sets** for **external normalization, analysis, and discovery indexing**, and basic reporting and data reconciliation.

It will also serve as a project to **connect an engineering team with data providers and consumers**, and will help POD **refine and develop operational models** for a service based on the MVP, situating data transfer and aggregation within the POD ecosystem.

DATA LAKE MVP PROJECT TEAM

- Product Owner: Mark Matienzo (Stanford)
- Tech Lead: Chris Beer (Stanford)
- Scrum Master: Jessie Keck (Stanford)
- Developers:
 - Stanford: Chris Beer, Jessie Keck, Jack Reed, Camille Villa
 - Brown: Adam Bradley, Hector Correa, Birkin Diana, Justin Uhr
- UX Design Consultant: Gary Geisler (Stanford)
- Data Liaison/Wrangler: Bob Persing (Penn)

Aggregator Organizations Activity Users

UPLOADS

P

 Supports uploads from dashboard, API, or remote URL (on a web server)

New Upload

You can also upload by submitting a POST with an http client (e.g. curl command). Note that you should only provide either upload[files] [] OR upload[url].

curl -F 'upload[name]=[NAME_OF_YOUR_FILE]' \
-F 'upload[files][]=@[LOCATION_TO_YOUR_FILE]' \
-F 'upload[url]=[URL_TO_YOUR_FILE]' \
-H 'Authorization: Bearer ey
https://pod.stanford.edu/organizations/stanford/uploads

Name

Upload file	Browse
OR	
Upload via URL	

https://example.com/12345.marc

Create Upload

DATA PROFILING TOOLS

 Summary information (inclusion of 001s, multilingual data, holdings)

Stanford

Streams full_20201124

Summary

Description	Fields	Info	
	001	8243438 of 8941463	
MHLD information	85x, 86x, 87x	85x: true	
		86x: true	
		87x: true	
Mutilingual data	88x	true	

DATA PROFILING TOOLS

- Summary information (inclusion of 001s, multilingual data, holdings)
- Histogram of MARC field and subfield occurrence

Histogram

6

Field	%	Occurences	Subfield			
001	92.193%	1x: 8243438				
002	0.000%	1x: 4				
003	92.193%	1x: 8243438				
005	92.193%	1x: 8243433				
006	15.272%	1x: 1362260, 2x: 3218, 3x: 68, 4x: 15, 5x: 3				
007	20.426%	1x: 1579781, 2x: 233756, 3x: 12749, 4x: 53, 5x: 6, 6x: 1				
800	92.163%	1x: 8240730, 2x: 7				
009	0.000%	1x: 9				
010	40.934%	1x: 3634834, 2x: 24298, 3x: 949, 4x: 14, 5x: 1, 7x: 1	>			
260	77.410%	1x: 6917548, 2x: 3326, 3x: 519, 4x: 105, 5x: 36, 6x: 12, 7x: 3, 8x: 1, 12x: 1	>			
Subfi	ield %	Occurences				
	0.00	% 1x: 26				
	0.00	9% 1x: 1				
	0.00	% 1x: 2				
1	0.00	% 1x: 81				
2	0.00)% 1x: 28				

3 0.050% 1x: 1462, 2x: 1594, 3x: 330, 4x: 69, 5x: 25, 6x: 11, 7x: 1, 11x: 1

8.915% 1x: 616913, 2x: 148, 3x: 15, 5x: 1

DATA PROFILING TOOLS

- Summary information (inclusion of 001s, multilingual data, holdings)
- Histogram of MARC field and subfield occurrence
- Listing of non-standard field usage

Non-standard subfields

Field	Subfield	Sample values
010		
		2014432671, /agb985468
	1	0912300
	с	CSt, CSt-H
	d	CSt, RCJ, W1215900 $>$
	е	editor2017944106, dacs, W1215900
	f	N0371300
	g	N0371300
	0	ocm11043999
	q	(electronic), (USB), (print-on-demand) >

STATISTICS

Organizations

Name		Files	Size	Unique records	Total records	Last updated
4	Brown	40	2.06 GB	4,326,101	5,616,145	2020-11-17 16:32:27 UTC
0	Chicago	0	0 Bytes	0	0	
	Columbia	0	0 Bytes	0	0	
۲	Cornell	0	0 Bytes	0	0	
0	Dartmouth	0	0 Bytes	0	0	
	Duke	0	0 Bytes	0	0	
W	Harvard	60	4.63 GB	0	0	2020-11-19 23:25:29 UTC
	Ivy University	6	210 MB	508	551	2020-11-21 00:24:54 UTC
	Johns Hopkins	0	0 Bytes	0	0	
	Library of Congress	3	193 MB	750,000	750,000	2020-11-19 02:19:14 UTC
<u>al</u> a	markm test	3	2.48 GB	2,257,621	6,876,489	2020-11-25 01:51:28 UTC
1117	MIT	0	0 Bytes	0	0	
*	Penn	0	0 Bytes	0	0	
*	Princeton	0	0 Bytes	0	0	
8	Stanford	28	13.5 GB	8,243,438	8,243,438	2020-11-24 23:32:21 UTC
	test	0	0 Bytes	0	0	
	Yale	0	0 Bytes	0	0	
		140	23 GB	15,577,668	21,486,623	

Uploads

Organization	Name	Updated	File count	File size	Records	
lvy	2020-11-30T21:09:25Z	about 2 hours	28	120	490	
University		ago		KB		
	vernacularSearchTests.mrc	application/marc		12.4	24	
				КВ		
	vernacularNonSearchTests.mrc	application/marc		6.48	14	
				KB		-

FOR MORE DATA LAKE INFO...

- Data Lake MVP: <u>pod.stanford.edu</u>
- GitHub Repository: <u>github.com/ivplus/aggregator</u>

MVP Goal

Support receiving and transmitting both full dumps and delta change sets **MVP Goal**

Enable external normalization, analysis, and discovery indexing, and basic reporting and data reconciliation

MVP Goal

Help POD refine and develop operational models for a service based on the MVP

FRANKLIN DEMO

- 7M Penn records
- 43M titles total
- Default limit to Penn
- Expand to POD
- Direct link to partner libraries

REQUIREMENTS FOR DATA FEEDS & USE

Enable innovation and reduce bureaucratic drag

Appropriately apportion risk, responsibility and accountability to actors

Data Provider Minimum Standards

- Contribute only data that may be shared to **facilitate public discovery**
- Agree that **data may be used by other POD libraries** for purposes such as **research, testing, or development**
- Encouraged to provide data under permissive terms, with license (e.g., a CC0 waiver).

Data Consumers

- Data in the lake is available to any POD participant to extract and reuse.
- Participant must consume and reuse the data responsibly.
- Contact originating library for uses outside minimum standards

DISCOVERY & FULFILLMENT

- Initial vision had a cloud hosted shared index of POD data (à la BDSI) or even a shared Blacklight instance
- Current focus on indexing POD data locally
 - Bibliographic and holdings records
 - Does not include availability
- Fulfillment via existing Relais (or successor)

COMMUNICATIONS

- Mailing Lists
 - Slack (Open): pod4lib.slack.com
 - Announcements (Open): <u>POD-announce@googlegroups.com</u>
 - Technical Coordination (Open): <u>POD-tech@googlegroups.com</u>
 - Contact: <u>LIBpod@o365lists.upenn.edu</u>
- Monthly Reports
- Biweekly meetings of the POD Tech group

CURRENT POD DATA SOURCES

- 9 participating institutions
- CLIO Open Data (Columbia) https://library.columbia.edu/bts/clio-data.html
- HathiTrust
- We welcome data contributions from additional sources

CALL TO ACTION

- Explore the Demo site
 - Penn: https://blacklight-test.library.upenn.edu/catalog
 - Username = pod, Password = dolphin
- Review the Data Usage Framework: <u>https://bit.ly/pod-data-framework</u>
- Provide feedback via email: <u>LIBpod@o365lists.upenn.edu</u>
- Join our communication channels/listservs
- Contribute your data
- Join the project

LOOKING FORWARD TO 2021

• More work on the MVP

- Sustaining governance while increasing the number of partners
- Engaging local solutions using POD data for BorrowDirect fulfillment
- Explore solutions using POD data for Collections analytics
- Review and assess initial infrastructure choices
- Exploring intersections with other Ivy Plus priorities